

Betriebsanleitung

Der Temperaturregler UPT-606 hat eine zentrale Bedeutung in einem ULTRA-PULSE System, da er das gesamte Wärmemanagment, d.h. die Temperaturregelung des Heizelements, sowie das präzise Timing dieses hochdynamischen Wärmeimpuls-Verfahrens sicherstellt.

Wichtige Merkmale

- Mikroprozessor-Technik
- PROFIBUS-DP Schnittstelle für komplette Reglersteuerung •
- Automatischer Nullabgleich (AUTOCAL)
- Automatische Frequenzanpassung •
- Großer Strom- und Spannungsbereich ٠
- Booster-Ausgang serienmäßig •
- Analogausgang 0...10VDC für IST-Temperatur ٠
- Alarmfunktion mit Fehlerdiagnose
- Heizleiterlegierung und Temperaturbereich wählbar ٠

 Image: Construction of the second second

D-74321-Bietigheim-Bissingen

Tel: +49/(0)7142/7776-0 Fax: +49/(0)7142/7776-19

R E-X P

Inhaltsverzeichnis

1	Siche	rheits- und Warnhinweise
	1.1	Verwendung 3
	1.2	Heizelement
	1.3	Impuls-Transformator
	1.4	Stromwandler PEX-W2
	1.5	Netzfilter
	1.6	Garantiebestimmungen
	1.7	Normen / CE-Kennzeichnung 4
2	Anwe	ndung 4
3	Syste	mbeschreibung5
	3.1	Temperaturregler 5
	3.2	Stromwandler 6
	3.3	Booster 6
4	Zubel	hör und Modifikationen
	4.1	Zubehör 6
	4.2	Modifikationen (MODs)7
5	Techi	nische Daten8
6	Abme	essungen9
7	Monta	age und Installation
	7.1	Installationshinweise
	7.2	Installationsvorschriften
	7.3	Netzanschluss 11
	7.4	Netzfilter 12
	7.5	Stromwandler PEX-W2 12
	7.6	Anschlussbild (Standard) 13
	7.7	Anschlussbild mit Booster-Anschluss 14

8	Inbet	riebnahme und Betrieb
	8.1	Geräteansicht 15
	8.2	Gerätekonfiguration15
	8.3	Inbetriebnahmevorschriften 17
9	Gerä	tefunktionen 19
	9.1	Anzeige- und Bedienelemente 19
	9.2	Gerätestammdaten-Datei (GSD) 19
	9.3	PROFIBUS-Protokoll 20
	9.4	Eingangsdaten 21
	9.5	Ausgangsdaten
	9.6	Parameterdaten
	9.7	Temperaturanzeige (Istwert-Ausg.) 27
	9.8	Booster-Anschluss 27
	9.9	Systemüberwachung/Alarmausgabe . 28
	9.10	Fehlermeldungen 28
	9.11	Fehlerbereiche und -ursachen 30
10	Werk	seinstellungen 31
11	Wart	ung
12	Best	ellschlüssel 32
13	Index	«

1 Sicherheits- und Warnhinweise

Dieser CIRUS-Temperaturregler ist gemäß DIN EN 61010-1 hergestellt und wurde während der Fertigung – im Rahmen der Qualitätssicherung – mehrfach geprüft und kontrolliert.

Das Gerät hat unser Werk in einwandfreiem Zustand verlassen.

Die in der Betriebsanleitung enthaltenen Hinweise und Warnvermerke müssen beachtet werden, um einen gefahrlosen Betrieb zu gewährleisten.

Ohne Beeinträchtigung seiner Betriebssicherheit kann das Gerät innerhalb der in den "Technischen Daten" genannten Bedingungen betrieben werden. Die Installation und Wartung darf nur von sach- und fachkundig geschulten Personen vorgenommen werden, die mit den damit verbundenen Gefahren und Garantiebestimmungen vertraut sind.

1.1 Verwendung

CIRUS-Temperaturregler dürfen nur für die Beheizung und Temperaturregelung von ausdrücklich dafür geeigneten Heizelementen unter Beachtung der in dieser Anleitung ausgeführten Vorschriften, Hinweisen und Warnungen betrieben werden.

Bei Nichtbeachtung bzw. nicht bestimmungsgemäßem Gebrauch besteht Gefahr der Beeinträchtigung der Sicherheit bzw. der Überhitzung von Heizelement, elektrischen Leitungen, Transformator etc. Dies liegt in der eigenen Verantwortung des Anwenders.

1.2 Heizelement

CIRUS-Temperaturregler sind bezüglich des Temperaturkoeffizienten auf CIRUS-Heizelemente angepasst.

Der Betrieb mit anderen Heizleitern ist nicht zulässig, da es dabei zu Überhitzungen und Zerstörung des Heizleiters kommen kann.

1.3 Impuls-Transformator

Zur einwandfreien Funktion des Regelkreises ist die Verwendung eines geeigneten Impuls-Transformators notwendig. Der Transformator muss nach VDE 0570/ EN 61558 ausgeführt sein (Trenntransformator mit verstärkter Isolierung) und eine Einkammer-Bauform besitzen. Bei der Montage des Impuls-Transformators ist ein – entsprechend den nationalen Installations- und Errichtungsbestimmungen – ausreichender Berührungsschutz vorzusehen. Darüber hinaus muss verhindert werden, dass Wasser, Reinigungslösungen bzw. leitende Flüssigkeiten an den Transformator gelangen.

Die falsche Montage und Installation des Impuls-Transformators beeinträchtigt die elektrische Sicherheit.

1.4 Stromwandler PEX-W2

Der zum CIRUS-Temperaturregler gehörende Stromwandler ist Bestandteil des Regelsystems.

Es darf nur der originale ROPEX-Stromwandler PEX-W2 verwendet werden, um Fehlfunktionen zu vermeiden.

Der Betrieb des Stromwandlers darf nur erfolgen, wenn er korrekt am CIRUS-Temperaturregler angeschlossen ist (s. Kap. "Inbetriebnahme"). Die sicherheitsrelevanten Hinweise im Kapitel "Netzanschluss" sind zu beachten. Zur zusätzlichen Erhöhung der Betriebssicherheit können externe Überwachungsbaugruppen eingesetzt werden. Diese sind nicht Bestandteil des Standard-Regelsystems und in gesonderten Dokumentationen beschrieben.

1.5 Netzfilter

Zur Erfüllung der in Kap. 1.7 "Normen / CE-Kennzeichnung" auf Seite 4 genannten Normen und Bestimmungen ist die Verwendung eines originalen ROPEX-Netzfilters vorgeschrieben. Die Installation und der Anschluss hat entsprechend den Hinweisen im Kapitel "Netzanschluss", bzw. der separaten Dokumentation zum jeweiligen Netzfilter zu erfolgen.

1.6 Garantiebestimmungen

Es gelten die gesetzlichen Bestimmungen für Garantieleistungen innerhalb 12 Monaten ab Auslieferdatum. Alle Geräte werden werkseitig geprüft und kalibriert. Von der Garantie ausgeschlossen sind Geräte mit Schäden durch Fehlanschlüsse, Sturz, elektrische Überlastung, natürliche Abnutzung, fehlerhafte oder

nachlässige Behandlung, Folgen chemischer Einflüsse oder mechanischer Überbeanspruchung sowie vom Kunden umgebaute oder umettiketierte oder sonst veränderte Geräte, wie Reparaturversuche oder zusätzliche Einbauten.

Garantieansprüche müssen von ROPEX geprüft werden.

1.7 Normen / CE-Kennzeichnung

Das hier beschriebene Regelgerät erfüllt folgende Normen, Bestimmungen bzw. Richtlinien:

- DIN EN 61010-1 Sicherheitsbestimmungen für elek-(VDE 0411-1) Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte (Niederspannungsrichtlinie). Überspannungskategorie III, Verschmutzungsgrad 2, Schutzklasse II.
- DIN EN 60204-1 Elektrische Ausrüstung von Maschinen (Maschinenrichtlinie)
- EN 50081-1 EMV-Störemission nach EN 55011, Gr.1, Kl.B
- EN 50082-2 EMV-Störfestigkeit: ESD, HF-Einstrahlung, Burst, Surge.

Die Erfüllung dieser Normen und Bestimmungen ist nur gewährleistet, wenn Original-Zubehör bzw. von ROPEX freigegebene Peripheriekomponenten verwendet werden. Ansonsten kann die Einhaltung der Normen und Bestimmungen nicht garantiert werden. Die Verwendung erfolgt in diesem Falle auf eigene Verantwortung des Anwenders.

Die CE-Kennzeichnung auf dem Regler bestätigt, dass das Gerät für sich, oben genannte Normen erfüllt.

Daraus läßt sich nicht ableiten, dass das Gesamtsystem gleichfalls diese Normen erfüllt.

Es liegt in der Verantwortung des Maschinenherstellers, bzw. Anwenders, das vollständig installierte, verkabelte und betriebsfertige System in der Maschine – hinsichtlich der Konformität zu den Sicherheitsbestimmungen und der EMV-Richtlinie – zu verifizieren (s. auch Kap. "Netzanschluss"). Bei Verwendung fremder Peripheriekomponenten übernimmt ROPEX keine Funktionsgarantie.

2 Anwendung

Dieser CIRUS-Temperaturregler ist Bestandteil der "Serie 600", und dient ausschließlich zur Temperaturregelung von CIRUS/UPT-Heizelementen, welche hauptsächlich für das Schweißen von PP- und PE-Folien nach dem Wärmeimpuls-Verfahren angewendet werden. Die wichtigsten Einsatzgebiete sind sind Verpackungsmaschinen, Beutelherstellungsmaschinen, Splicer, Maschinen zu Herstellung pharmazeutischmedizinischer Produkte, usw.

3 Systembeschreibung

Im obigen Bild ist der prinzipielle Aufbau des Gesamtsystems dargestellt.

CIRUS-Heizelemente, insbesondere UPT-Heizelemente, sind Hochleistungssysteme, die effektiv und störungsfrei funktionieren, wenn alle Regelkreiskomponenten optimal aufeinander – und auf die Problemstellung – abgestimmt sind. Die Einbau- und Verkabelungsvorschriften sind genau zu beachten. Die ROPEX GmbH hat in intensiver Entwicklungsarbeit diese Systemoptimierung und -zusammenstellung durchgeführt. Bei Beachtung unserer technischen Empfehlungen verfügt der Anwender über die optimale Funktionalität dieser Technologie in Verbindung mit geringstem eigenem Aufwand bei Installationen, Inbetriebnahme und Wartung.

3.1 Temperaturregler

Über Strom- und Spannungsmessung berechnet der Regler den Widerstand des Heizelements mit einer hohen Messrate (= Netzfrequenz), vergleicht diesen Wert mit dem eingestellten Sollwert und verändert, bei einer Differenz ungleich 0 den Heizstrom über einen im Phasenanschnitt betriebenen Transformator derart, dass Soll = Ist erreicht wird.

Die Messung rein elektrischer Größen in schneller Folge zusammen mit der geringen Masse der Heiz-

schicht des UPT-Heizelementes ergeben einen hochdynamischen thermoelektrischen Regelkreis.

Aufgrund seiner Mikroprozessor basierenden Technik verfügt der Regler neben seinem optimierten Regelalgorithmus über zahlreiche, auf die jeweiligen Aufgaben abgestimmte Funktionen wie "AUTOCAL", ALARM mit Fehlerdiagnose, usw., die nachfolgend einzeln beschrieben werden.

Der CIRUS-Temperaturregler UPT-606 ist mit einer PROFIBUS-DP Schnittstelle ausgestattet. Über diese Schnittstelle können sämtliche Regler-Funktionen gesteuert und Regler-Informationen abgefragt werden. Die IST-Temperatur des Heizleiters wird über die PRO-FIBUS-Schnittstelle sowie einen analogen Ausgang 0...10VDC ausgegeben. Die Visualisierung der realen Temperatur des UPT-Heizelements kann hiermit an

4 Zubehör und Modifikationen

Für den CIRUS-Temperaturregler UPT-606 ist ein vielfältiges Programm an abgestimmten Zubehörkomponenten und Peripheriegeräten verfügbar. Dadurch kann die optimale Anpassung an Ihre Schweißapplikation und die jeweilige Anlagenauslegung bzw. -bedienung erfolgen.

4.1 Zubehör

Die im Folgenden aufgeführten Zubehörprodukte sind ein Auszug aus dem vielfältigen Zubehörprogramm zu den CIRUS-Temperaturreglern (& Prospekt "Zubehör").

Analoge Temperaturanzeige ATR-x

Schalttafeleinbau oder Hutschienenmontage.

Zur analogen Anzeige der IST-Temperatur des Heizelements in °C. Die Messwerkdämpfung des Geräts ist auf die schnellen Temperaturveränderungen bei Impulsbetrieb abgestimmt.

einem externen Anzeigeinstrument (z.B. ATR-x) erfolgen.

Der UPT-606 verfügt über eine integrierte Fehlerdiagnose, die sowohl das äußere System (Heizelement, Verkabelung etc.) als auch die interne Elektronik überprüft und im Störungsfall eine differenzierte Fehlermeldung ausgibt.

Zur Erhöhung der Betriebssicherheit und der Störfestigkeit sind alle PROFIBUS-Signale vom Regler und Heizkreis galvanisch entkoppelt.

Die kompakte Bauform des CIRUS-Temperaturreglers UPT-606 sowie die steckbaren Anschlussklemmen erleichtern die Montage und Installation.

3.2 Stromwandler

Der zum CIRUS-Regler UPT-606 gehörende Stromwandler PEX-W2 ist Bestandteil des Regelsystems. Es darf nur dieser original Ropex-Stromwandler verwendet werden.

Den Stromwandler nicht mit offenen Anschlüssen betreiben!

3.3 Booster

Bei Lastströmen die den Regler-Nennstrom überschreiten (^t Kap. 5 "Technische Daten" auf Seite 8) muss ein externer Schaltverstärker ("Booster") verwendet werden (^t Kap. 4.1 "Zubehör" auf Seite 6). Die weiteren Systemkomponenten wie UPT-Schweißschienen, Transformatoren, Filter, Kühlaggregat usw. werden in gesonderten Broschüren beschrieben.

	\wedge				
	\bigcirc			_77_	
-77-	\bigcirc		6.	277	
		V			

 Digitale Temperaturanzeige DTR-x Schalttafeleinbau oder Hutschienenmontage. Zur digitalen Anzeige der IST-Temperatur des Heizelements in °C, mit HOLD-Funk- tion.
Netzfilter LF-xx480 Zur Einhaltung der CE-Konformität zwingend erforderlich. Optimiert für die CIRUS-Temperaturregler.
Impuls-Transformator ITR-x Nach VDE 0570/EN 61558 mit Einkammer-Bauform. Optimiert für den Impulsbetrieb mit CIRUS-Temperaturreglern. Die Dimensionierung ist abhängig von der Schweißapplikation. (ROPEX-Applikationsbericht).
Booster B-xxx400 Externer Schaltverstärker, erforderlich bei höheren Primärströmen. (Dauerstrom > 5A, Impulsstrom > 25A)
Überwachungs-Stromwandler MSW Zur Erkennung von Masse-Kurzschlüssen am Heizelement. Einsatz alternativ zum Standard-Stromwandler PEX-W2.
U_R-Messleitung UML-1 Verdrillte Messleitung zur U _R -Spannungsmessung. Schleppkettentauglich, halogen- und silikonfrei.

4.2 Modifikationen (MODs)

Durch die umfangreiche Funktionalität des Reglers UPT-606 sind Modifikationen nicht notwendig.

5 Technische Daten

Bauform	Gehäuse zur Schaltschrankmontage Auf Hutschiene TS35 (35mm) nach DIN EN 50022 aufrastbar Grundfläche: 90 x 75mm; Höhe: 135mm (incl. Anschlussklemmen)
Netzspannung	115VAC-Version: 115VAC -15%120VAC +10% (entspr. 98132VAC) 230VAC-Version: 230VAC -15%240VAC +10% (entspr. 196264VAC) 400VAC-Version: 400VAC -15%415VAC +10% (entspr. 340456VAC) je nach Geräteausführung (∜ Kap. 12 "Bestellschlüssel" auf Seite 33)
Netzfrequenz	4763Hz, automatische Frequenzanpassung in diesem Bereich
Hilfsversorung Klemme 5+7 oder PROFIBUS-Stecker, Pin 2+7	24VDC, Imax = 30mA Toleranz: +10 / -10% Die Hilfsversorgung kann wahlweise über die Klemme 5 und 7 oder über den PROFIBUS-Stecker an Pin 2 und 7 zugeführt werden.
PROFIBUS-DP Schnittstelle	Baudraten: 9,6kBaud; 19,2kBaud; 45,45kBaud; 93,75kBaud; 187,5KBaud; 500KBaud; 1,5MBaud; 3MBaud; 6MBaud; 12MBaud Anschlussstecker nach IEC 61158
Heizleitertyp und Temperaturbereich	Ein Bereich über Drehcodierschalter oder PROFIBUS-Schnittstelle einstellbar: Temperaturkoeffizient 1700ppm (an die ULTRA-PULSE-Heizelemente angepasst), 0300°C
Analog-Ausgang (Istwert) Klemme 17+18	010VDC, I _{max} = 5mA entsprechend 0300°C
Alarm-Relais Klemmen 12, 13, 14	U _{max} = 50VDC, I _{max} = 0,2A, Wechselkontakt, potentialfrei
Maximaler Laststrom (Primärstrom des Impuls-Transf.)	I _{max} = 5A (ED = 100%) I _{max} = 25A (ED = 20%)
Umgebungs- temperatur	+5+45°C
Schutzart	IP20
Montage	Bei Montage mehrerer Geräte auf einer Hut- schiene ist ein Mindestabstand von 20mm einzu- halten.
Gewicht	ca. 0,7kg (incl. Klemmensteckteile)
Gehäusematerial	Kunststoff, UL-94-1, selbstverlöschend
Anschlusskabel Typ / Querschnitte	starr oder flexibel; 0,22,5mm² (AWG 2412) über steckbare Klemmen

6 Abmessungen

7 Montage und Installation

✤ s. auch Kap. 1 "Sicherheits- und Warnhinweise" auf Seite 3.

Die Montage, Installation und Inbetriebnahme darf nur von sach- und fachkundig geschulten Personen vorgenommen werden, die mit den damit verbundenen Gefahren und Garantiebestimmungen vertraut sind.

7.1 Installationshinweise

- 1. Sicherheits und Warnhinweise beachten (∜ "Sicherheits- und Warnhinweise" auf Seite 3.).
- 2. Angaben im ROPEX-Applikationsbericht, welcher kundenspezifisch für jede Applikation von ROPEX bereitgestellt wird, grundsätzlich beachten.
- Die elektrischen Komponenten wie Regler, Impulstransformator und Netzfilter möglichst nahe an der/ den UPT-Schweißschiene(n) montieren um große Leitungslängen zu vermeiden.

- Ausreichenden Kabelquerschnitt f
 ür den Prim
 ärund Sekund
 ärkreis vorsehen (
 ^t→ Applikationsbericht).
- Nur ROPEX-Impulstransformatoren oder von ROPEX freigegebene Transformatoren einsetzen. Dabei Leistung, Einschaltdauer, Primär und Sekundärspannung beachten (∜ Applikationsbericht).

7.2 Installationsvorschriften

Bei der Montage und Installation des CIRUS-Temperaturreglers UPT-606 ist wie folgt vorzugehen:

- 1. Netzspannung ausschalten, Spannungsfreiheit prüfen.
- Nur CIRUS-Temperaturregler einsetzen, deren Angabe der Versorgungsspannung auf dem Typenschild mit der in der Anlage/Maschine vorhandenen Netzspannung übereinstimmt. Die Netzfrequenz wird im Bereich von 47 Hz bis 63 Hz vom Temperaturregler automatisch erkannt.
- Montage des CIRUS-Temperaturreglers im Schaltschrank auf einer Hutschiene TS35 (nach DIN EN 50022). Bei Montage mehrerer Geräte ist

der im Kap. 5 "Technische Daten" auf Seite 8 angegebenen Mindestabstand einzuhalten.

- 4. Verkabelung des Systems entsprechend den Vorschriften in Kap. 7.3 "Netzanschluss" auf Seite 11, Kap. 7.6 "Anschlussbild (Standard)" auf Seite 13 und dem ROPEX-Applikationsbericht. Die Angaben in Kap. 7.1 "Installationshinweise" auf Seite 9 sind zusätzlich zu beachten.
- 5. Verbindung des CIRUS-Temperaturreglers mit dem PROFIBUS-Master mit einem Anschlusskabel nach

IEC 61158 herstellen.

Alle Anschlussklemmen des Systems – auch die Klemmen für die Wicklungsdrähte am Impuls-Transformator – auf festen Sitz prüfen.

6. Überprüfung der Verkabelung entsprechend den gültigen nationalen und internationalen Installations- und Errichtungsbestimmungen.

7.3 Netzanschluss

Netz

230VAC, 400VAC +10% / -15%, 50/60Hz

Überstromeinrichtung

2-poliger Sicherungsautomat, Auslöse-Charakteristik Z, Nennstrom: 16A, z.B. ABB-STOTZ, Type S282-Z16 Bei Anwendungen mit Booster, siehe Applikationsbericht.

Nur Schutz bei Kurzschluss.

Kein Schutz des CIRUS-Temperaturreglers.

Schütz K1

Für evtl. Funktion "HEIZUNG EIN - AUS" (allpolig), oder "NOT - AUS".

Netzfilter

Filterart und Filtergröße müssen abhängig von Last, Transformator und Maschinen-Verkabelung ermittelt werden (
ROPEX-Applikationsbericht).

Filter-Zuleitungen (Netzseite) nicht parallel zu Filter-Ausgangsleitungen (Lastseite) verlegen.

CIRUS-Temperaturregler der "Serie 6xx".

Schütz K2

Zur Abschaltung der Last (allpolig), z.B. in Kombination mit dem ALARM-Ausgang vom Temperaturregler.

Impuls-Transformator

Ausführung nach VDE 0570/EN 61558 (Trenntransformator mit verstärkter Isolierung). Kern erden.

Nur ROPEX-Impuls-Transformatoren verwenden. Leistung, ED-Zahl und Spannungswerte müssen abhängig vom Anwendungsfall individuell ermittelt werden (\$ ROPEX-Applikationsbericht).

Verkabelung

Kabelquerschnitte sind abhängig vom Anwendungsfall (\Leftrightarrow ROPEX-Applikationsbericht).

Richtwerte:

Primärkreis: min. 1,5mm², max. 2,5mm² Sekundärkreis: von 4,0...10mm²

- ① Unbedingt verdrillen (>20/m,
 ^t→ Zubehör "verdrillte Messleitung")
- ② Verdrillung (>20/m) notwendig, wenn mehrere Regelkreise gemeinsam verlegt werden ("Übersprechen").
- ③ Verdrillung (<20/m) empfohlen, um das EMV-Verhalten zu verbessern.

7.4 Netzfilter

Zur Einhaltung der EMV-Richtlinien – entsprechend EN 50081-1 und EN 50082-2 müssen CIRUS-Regelkreise mit Netzfiltern betrieben werden.

Diese dienen zur Dämpfung der Rückwirkung des Phasenanschnitts auf das Netz und zum Schutz des Reglers gegen Netzstörungen.

Die Verwendung eines geeigneten Netzfilters ist Bestandteil der Normenkonformität und Voraussetzung für die CE-Kennzeichnung.

ROPEX-Netzfilter sind speziell für den Einsatz in CIRUS-Regelkreisen optimiert und gewährleisten bei

korrekter Installation und Verdrahtung die Einhaltung der EMV-Grenzwerte.

Die Spezifikation des Netzfilters entnehmen Sie dem für Ihre Schweißapplikation erstellten ROPEX-Applikationsbericht.

Weitere technische Informationen: Dokumentation "Netzfilter".

Die Versorgung mehrerer CIRUS-Regelkreise über einen Netzfilter ist zulässig, wenn der Summenstrom den Maximalstrom des Filters nicht überschreitet.

Die Hinweise im Kap. 7.3 "Netzanschluss" auf Seite 11 bzgl. der Verkabelung müssen beachtet werden.

7.5 Stromwandler PEX-W2

Der zum CIRUS-Temperaturregler gehörende Stromwandler PEX-W2 ist Bestandteil des Regelsystems. Der Betrieb des Stromwandlers darf nur erfolgen, wenn er korrekt am Temperaturregler angeschlossen ist (∜ Kap. 7.3 "Netzanschluss" auf Seite 11).

Aufschnapp-Platte für Normschiene 35 x 7,5mm oder 35 x 15mm, nach DIN EN 50022

7.6 Anschlussbild (Standard)

7.7 Anschlussbild mit Booster-Anschluss

8 Inbetriebnahme und Betrieb

8.1 Geräteansicht

8.2 Gerätekonfiguration

Zur Konfiguration der Codierschalter und Steckbrücken muss der Regler ausgeschaltet sein.

8.2.1 Konfiguration der Codierschalter für Sekundärspannung und -strom

Codierschalter (DIP-Schalter) zur Anpassung der Sekundärspannung U_2 und für den Sekundärstrom I_2 in die für **Ihre** Anwendung geeignete Position stellen.

Eine genaue Angabe über die Konfiguration der Codierschalter (DIP-Schalter) finden Sie in dem für Ihre Anwendung erstellten ROPEX-Applikationsbericht.

DN 1234	Werkseinstellung												
U_2	DIP	-Scha	lter	I ₂	DIP-Schalter								
$\hat{\Gamma}$	1	2	3	$\hat{\Gamma}$	4	5							
110V	ON	OFF	OFF	30100A	OFF	OFF							
660V	OFF	ON	OFF	60200A	ON	OFF							
20120V	OFF	OFF	ON	120400A	ON	ON							

Bei Sekundärströmen I2 kleiner 30A muss der Stromwandler PEX-W2 mit 2 Windungen versehen werden (ROPEX-Applikationsbericht).

OFF

8.2.2 Konfiguration des Drehcodierschalters für Temperaturbereich und Legierung

Die Einstellung des Drehcodierschalters für Temperaturbereich und Legierung kann

durch die Parameterdaten (%Kap. 9.6 "Parameterdaten" auf Seite 25) überschrieben werden.

8.2.3 Konfiguration der Drehcodierschalter für Stationsadresse

An diesen beiden Drehcodierschaltern kann die Einerund Zehnerstelle der Stationsadresse des UPT-606 im PROFIBUS-Netz von 0 bis 99 eingestellt werden. Änderungen werden erst nach dem Einschalten wirksam.

8.2.4 Konfiguration des Alarm-Relais

Bei nicht eingesteckter Steckbrücke ist das Alarm-Relais dauernd aktiv (Alarmkontakt zwischen Klemme 13 und 14 geschlossen). Die anderen Reglerfunktionen (z.B. Aufheizung des Heizelements, AUTOCAL, etc.) sind dadurch nicht beeinträchtigt.

8.3 Inbetriebnahmevorschriften

Beachten Sie hierzu Kap. 1 "Sicherheits- und Warnhinweise" auf Seite 3 und Kap. 2 "Anwendung" auf Seite 4.

Die Montage, Installation und Inbetriebnahme darf nur von sach- und fachkundig geschulten Personen vorgenommen werden, die mit den damit verbundenen Gefahren und Garantiebestimmungen vertraut sind.

Voraussetzung: Gerät ist korrekt montiert und angeschlossen (Kap. 7 "Montage und Installation" auf Seite 9). Details aller Einstellmöglichkeiten sind in Kap. 9 "Gerätefunktionen" auf Seite 19 und Kap. 8.2 "Gerätekonfiguration" auf Seite 15 beschrieben.

Im Folgenden werden die grundsätzlich notwendigen Konfigurationen des Reglers beschrieben:

- 1. Netzspannung und 24VDC-Hilfsversorgung ausschalten, Spannungsfreiheit prüfen.
- Die Versorgungsspannung auf dem Typenschild des Reglers muss mit der in der Anlage/Maschine vorhandenen Netzspannung übereinstimmen. Die Netzfrequenz wird im Bereich 47...63Hz vom Regler automatisch erkannt.
- 3. Einstellung der Codierschalter am Gerät entsprechend dem ROPEX-Applikationsbericht, dem verwendeten Heizelement und der gewünschten Stationsadresse im PROFIBUS-Netz (∜ Kap. 8.2 "Gerätekonfiguration" auf Seite 15).
- 5. Sicherstellen, dass das "ST"-Bit nicht gesetzt ist.
- 6. Einschalten der Netzspannung und der 24VDC-

Hilfsversorgung in beliebiger Reihenfolge.

- Nach dem Einschalten leuchtet die gelbe LED "AUTOCAL" für ca. 0,3Sek. auf und zeigt damit den korrekten Einschaltvorgang des Reglers an. Solange keine PROFIBUS-Kommunikation aktiv ist, blinkt diese LED langsam (1Hz). Erst bei aktiver Kommunikation erlischt sie.
- 8. Die grüne LED "DATA EXCHANGE" leuchtet, wenn die PROFIBUS-Kommunikation aktiv ist.

9.	Folgende	Zustände	können	sich	danach	ergeben:
----	----------	----------	--------	------	--------	----------

LED "ALARM"	LED "OUTPUT"	MASSNAHME				
AUS	Kurze Impulse alle 1,2Sek	Weiter mit Punkt 10				
BLINKT schnell (4Hz)	AUS	Weiter mit Punkt 10				
dauernd EIN	AUS	Fehlerdiagnose (∜ Kap. 9.10)				

10.Bei kaltem Heizelement die Funktion AUTOCAL aktivieren, durch Setzen des "AC"-Bits (AUTOCAL) im PROFIBUS-Protokoll (∜ Kap. 9.3 "PROFIBUS-Protokoll" auf Seite 20). Die gelbe LED "AUTOCAL" leuchtet für die Dauer des Abgleichvorgangs (ca. 10...15Sek.). Während dieses Vorgangs ist das Bit "AA" (AUTOCAL aktiv) gesetzt und am Istwert-Ausgang (Klemme 17+18) wird eine Spannung von 0VDC ausgegeben. Ein angeschlossenes ATR-x zeigt 0°C. Nach erfolgtem Nullabgleich erlischt die LED "AUTOCAL" und das Bit "AA" wird wieder gelöscht. Am Istwert-Ausgang stellt sich eine Spannung von 0,66VDC (bei 300°C Bereich und Autocal-Temperatur = 20°C) ein. Ein angeschlossenes ATR-x muss auf der Markierung "Z" stehen.

Wenn der Nullabgleich nicht korrekt durchgeführt wird, ist das "AL"-Bit (**A**larm aktiv) gesetzt und die rote LED "ALARM" blinkt langsam (1Hz). Dann ist die Konfiguration des Reglers nicht korrekt ($\$ Kap. 8.2 "Gerätekonfiguration" auf Seite 15, ROPEX-Applikationsbericht). Nach korrekter Gerätekonfiguration den Abgleich nochmals durchführen.

11. Nach erfolgreichem Nullabgleich eine definierte Temperatur über das PROFIBUS-Protokoll vorgeben (Sollwert) und "ST"-Bit setzen. Das "RA"-Bit (Regelung aktiv) ist dann aktiv und die LED "HEAT" leuchtet. Am Istwert-Ausgang kann der Aufheizund Regelvorgang beobachtet werden:

Eine korrekte Funktion ist gegeben wenn die Temperatur (d.h. Signaländerung am Analogausgang oder der Istwert im PROFIBUS-Protokoll) stetig verläuft, d.h. nicht springt, schwingt oder sogar kurzzeitig in der falschen Richtung verläuft. Ein solches Verhalten deutet auf eine nicht korrekte Verlegung der U_R -Messleitung hin.

Bei Ausgabe eines Fehlercodes ist gem. Kap. 9.10 "Fehlermeldungen" auf Seite 28 vorzugehen.

Regler ist betriebsbereit

9 Gerätefunktionen

9.1 Anzeige- und Bedienelemente

mit dem Master ausgetauscht werden.

Neben den Funktionen im obigen Bild zeigen die LEDs noch weitere Betriebszustände des Reglers an. Diese sind in folgender Tabelle detailliert aufgeführt:

LED	blinkt langsam (1Hz)	blinkt schnell (4Hz)	dauernd an						
AUTOCAL (gelb)	keine PROFIBUS-Kommu- nikation	AUTOCAL angefordert, Funktion ist aber gesperrt	AUTOCAL wird ausgeführt						
HEAT (gelb)	_	START angefordert, Funktion ist aber gesperrt	START wird ausgeführt						
OUTPUT (grün)	Im Regelbetrieb ist die Leuchtintensität proportional zum Heizstrom.								
ALARM (rot)	Konfigurationsfehler, AUTOCAL nicht möglich	Regler falsch kalibriert, AUTOCAL durchführen	Fehler, 🏷 Kap. 9.10						
DATA EXCHANGE (grün)	_	_	Kommunikation mit PRO- FIBUS-Master aktiv						

Die folgenden Beschreibungen beinhalten nur gerätespezifische Funktionen. Allgemeine Informationen zum PROFIBUS und zur Systemkonfiguration entnehmen Sie bitte Ihrer SPS-Beschreibung.

9.2 Gerätestammdaten-Datei (GSD)

Projektierungstools für den zu projektierenden PRO-FIBUS-DP Master interpretieren den Inhalt der GSD-Dateien der Slaves und erzeugen daraus einen Master-Parametersatz für den PROFIBUS-Master, der den Nutzdatenverkehr durchführt. Die Datei *ROP_07EA.GSD* des UPT-606 enthält alle für die Pro-

jektierung notwendigen Informationen über den Regler, z.B. die möglichen Baudraten, Parameterbeschreibungen, Alarmmeldungen, etc. Die GSD-Dateien, sowie die zugehörigen Bilddateien .DIB (zur Status-Visualisierung) liegen dem Regler in deutsch (.GSG) und englisch (.GSD oder .GSE) auf Diskette bei oder können per E-Mail (<u>support@ropex.de</u>) angefordert oder von unserer Homepage (<u>www.ropex.de</u>) heruntergeladen werden.

Nachdem die gewünschte GSD-Datei in das Projektierungstool eingebunden wurde, muss eines der beiden Kommunikationsmodule ("kompakt" oder "erweitert") ausgewählt werden. Dieses bestimmt dann, über welches Protokoll der UPT-606 mit dem PROFIBUS-Master kommuniziert.

Um den vollen Funktionsumfang des Reglers nutzen zu können, muss die passende GSD-Version verwendet werden. Die zu verwendende GSD-Version auf dem Gehäuse des Reglers vermerkt.

9.3 PROFIBUS-Protokoll

Das PROFIBUS-Protokoll kann entweder als "kompakt" (16Bit für Eingangs- und 16Bit für Ausgangsdaten) oder als "erweitert" (2x16Bit für Eingangs- und 2x16Bit für Ausgangsdaten) konfiguriert werden. Das Protokoll wird beim Projektieren durch die Auswahl des entsprechenden Moduls ("kompakt" oder "erweitert") bestimmt. Das kompakte Protokoll ermöglicht eine effiziente Kommunikation mit dem UPT-606. Beim erweiterten Protokoll sind der Soll- und der Istwert des UPT-606 von den Statusinformationen und den Steuerfunktionen getrennt, so dass eine einfachere Decodierung beim PROFIBUS-Master möglich ist.

Die Bits 0...7 bilden das Low-Byte, die Bits 8...15 das High-Byte ("INTEL-Format"). Siehe hierzu azch Kap. 9.6.8 "Datenformat" auf Seite 26.

9.3.1 Protokoll "kompakt"

Die 16Bit-**Eingangsdaten** vom PROFIBUS-Master zum UPT-606 enthalten den Sollwert und Steuerfunktionen und sind wie folgt strukturiert:

	Steuerfunktion Reserve					е	Sollwert									
Name:	RS	ST	AC	MP	0	0	0									
Bit-Nr.:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Die 16Bit-**Ausgangsdaten** vom UPT-606 zum PRO-FIBUS-Master enthalten den Istwert oder Alarmcode und Statusinformationen und haben folgende Struktur:

													Alarr	ncode	, bei A	L = 1
	Statusinformationen								Istwert (kompakt), bei AL = 0							
Name:	AA	AG	AL	TE	то	RA	VZ						A3	A2	A1	A0
Bit-Nr.:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

9.3.2 Protokoll "erweitert"

Im erweiterten Protokoll werden 2x16Bit übertragen. Die 2x16Bit-**Eingangsdaten** enthalten im Wort ① den Sollwert und im Wort ② die Steuerfunktionen:

0	Reserve							Sollwert								
Name:	0	0	0	0	0	0	0									
Bit-Nr.:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2					Res						5	Steuerf	unktio	n		
Name:	0	0	0	0	0	0	0	0	0	0	0	0	MP	RS	ST	AC
Bit-Nr.:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Die 2x16Bit-**Ausgangsdaten** enthalten im Wort ① den Istwert und im Wort ② den Alarmcode und Statusinformationen:

0						ls	stwert	(vorzei	ichenb	ehafte	t)					
Name:	VZ															
Bit-Nr.:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

2	Reserve			Alarmcode			Reserve		Statusinformationen							
Name:	0	0	0	0	A3	A2	A1	A0	0	0	AA	AG	AL	TE	ТО	RA
Bit-Nr.:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

9.4 Eingangsdaten

Eingangsdaten sind die Daten, die vom PROFIBUS-Master zum UPT-606 übermittelt werden. Sie enthalten den Sollwert und Steuerfunktionen, wie z.B START oder AUTOCAL für den UPT-606. Die Funktionen sind im Folgenden erläutert.

9.4.1 Autom. Nullabgleich "AUTOCAL" (AC)

Durch den automatischen Nullabgleich (AUTOCAL) ist keine manuelle Nullpunkteinstellung am Regler notwendig. Mit der Funktion AUTOCAL passt sich der Regler auf die im System vorliegenden Strom- und Spannungssignale an, und stellt sich auf den in den Parameterdaten (Kap. 9.6.4 "Variable Kalibriertemperatur" auf Seite 25) vordefinierten Wert ein. Wenn keine Parameterdaten vom PROFIBUS-Master übertragen werden, beträgt der Standardwert 20°C. Die AUTOCAL-Anforderung ("AC"-Bit = 1) wird vom Regler ausgeführt, falls die Funktion AUTOCAL nicht gesperrt ist.

Der automatische Kalibriervorgang dauert ca. 10...15 Sek. Eine zusätzliche Erwärmung des Heizelements findet hierbei nicht statt. Während der Ausführung der Funktion AUTOCAL leuchtet die zugehörige gelbe LED auf der Frontplatte und der Regler meldet "AUTOCAL aktiv" ("AA"-Bit = 1) in den Ausgangsdaten. Der Istwert-Ausgang (Klemme 17+18) geht auf 0°C (d.h. 0 VDC).

Die Funktion "AUTOCAL" nur durchführen, wenn Heizleiter und Trägerschiene abgekühlt sind (Grundtemperatur).

Sperrungen der Funktion AUTOCAL:

 Eine AUTOCAL-Anforderung wird erst 10 Sek. nach Einschalten des Reglers angenommen. Der Regler meldet in dieser Zeit "AUTOCAL gesperrt" ("AG"-Bit = 1) in den Ausgangsdaten.

- Die Funktion AUTOCAL wird nicht durchgeführt, wenn die Abkühlgeschwindigkeit des Heizleiters mehr als 0,1K/Sek. beträgt. Bei aktiviertem "AC"-Bit wird die Funktion dann ausgeführt, wenn die Abkühlgeschwindigkeit unter den vorgegebenen Wert gesunken ist.
- Bei aktiviertem "START"-Bit ("ST"-Bit = 1) wird die Funktion AUTOCAL nicht durchgeführt (LED "HEAT" leuchtet).
- Direkt nach dem Einschalten des Reglers kann die Funktion AUTOCAL nach Auftreten der Fehler Nr. 1...3, 5...7 nicht durchgeführt werden (♥ Kap. 9.10 "Fehlermeldungen" auf Seite 28). Hat der Regler nach dem Einschalten schon – mindestens einmal – korrekt gearbeitet, dann ist die Funktion AUTOCAL nicht möglich, wenn die Fehler Nr. 5...7 aufgetreten sind.

Ist die Funktion AUTOCAL gesperrt ("AG"-Bit = 1) und besteht gleichzeitig eine entsprechende Anforderung ("AG"-Bit = 1), blinkt die "AUTOCAL"-LED schnell (4Hz).

9.4.2 Start (ST)

Mit Aktivierung des "START"-Bits ("ST"-Bit = 1) wird der geräteinterne Soll-Ist-Vergleich freigegeben und das Heizelement auf die eingestellte SOLL-Temperatur aufgeheizt. Dies erfolgt entweder bis zum Zurücksetzen des "ST"-Bits oder wenn die Heizdauer die in den Parameterdaten eingestellte Heizzeitbegrenzung überschreitet (∜ Kap. 9.6.5 "Heizzeitbegrenzung" auf Seite 26).

Die LED "HEAT" auf der Frontplatte des UPT-606 leuchtet während dieser Heizzeit dauernd.

Eine Startanforderung wird nicht verarbeitet, solange die Funktion AUTOCAL aktiv ist, der Regler sich im Alarmzustand befindet, der Sollwert nicht mehr als 20°C über der Kalibriertemperatur liegt oder das "RS"-Bit aktiv ist. In diesem Fall blinkt die LED "HEAT".

Durch Zurücksetzen des "ST"-Bits wird der Heizvorgang beendet, ebenso bei PROFIBUS-Fehlern.

Das "ST"-Bit wird nur akzeptiert, wenn die Funktion AUTOCAL nicht aktiv ist und kein Alarm vorliegt.

9.4.3 Reset (RS)

Dieses Bit dient dem Rücksetzen des Reglers, wenn der Regler im Alarmzustand ist.

Solange das "RS"-Bit gesetzt ist, wird keine AUTOCALund keine START-Anforderung angenommen. In diesem Zustand erfolgt keine Ansteuerung des Leistungsteils und es werden keine Messimpulse generiert. Dadurch erfolgt auch keine Aktualisierung des Istwertes mehr. Die Reset-Anforderung wird erst mit dem Zurücksetzen des "RS"-Bits verarbeitet. Die PRO-FIBUS-Kommunikation wird durch das Rücksetzen des Reglers nicht unterbrochen. Der Regler fordert lediglich die Parameterdaten vom PROFIBUS-Master neu an.

Nach Rücksetzen des "RS"-Bits führt der Regler für ca. 500ms eine interne Initialisierung durch. Erst danach kann der nächste Schweißvorgang gestartet werden.

Ein evtl. verwendetes Schütz K2 zur Abschaltung des Regelkreises (% Kap. 7.3 "Netzanschluss" auf Seite 11) muss spätestens 50ms nach Rücksetzen des "RS"-Bits wieder eingeschaltet sein. Ein verspätetes Einschalten führt zu einer Alarmmeldung des Reglers.

9.4.4 Messpause (MP)

Durch Setzen des "MP"-Bit generiert der Regler sofort keine Messimpulse mehr. Bei der Fehlerdiagnose werden nur noch die Fehler Nr. 5, 6 und 7 ausgewertet und ausgegeben. Weiterhin wird der Istwert nicht mehr aktualisiert. Es wird der letzte - vor Setzen des Bits gültige Wert ausgegeben. Nach Löschen des Bits werden sofort wieder Messimpulse erzeugt, alle Fehlermeldungen ausgewertet und der Istwert aktualisiert. Dieses Bit wirkt nur im Messbetrieb. "ST", "RS" und "AC" haben Vorrang.

Das Bit ist für Anwendungsfälle geeignet, in welchen die elektrischen Anschlüsse des Heizelements im normalen Betriebsablauf getrennt werden müssen, ohne daß ein Alarm ausgelöst werden soll (z.B. bei Schleifschienen-Kontakten).

Im Gegensatz zum "RS"-Bit (RESET) werden durch Setzen des "MP"-Bits keine Alarmmeldungen gelöscht. Nach Löschen des Bits ist der Regler sofort wieder aktiv, es wird keine Initialisierungsphase durchlaufen. Nach Einschalten des Reglers wird das "MP"-Bit erst vom Regler ausgewertet, wenn die Systemprüfung (incl. Funktionsprüfung des Heizkreises) erfolgreich abgeschlossen wurde. Dies kann mehrere 100ms dauern.

9.4.5 Sollwert

Je nach gewähltem Temperaturbereich (∜ Kap. 9.6.1 "Temperaturbereich und Legierung" auf Seite 25) kann der Sollwert bis 300°C oder bis 500°C vorgegeben werden. Bei größeren Sollwerten erfolgt eine interne Begrenzung auf 300°C bzw. 500°C.

9.5 Ausgangsdaten

Sind die Daten, die vom UPT-606 zum PROFIBUS-Master übermittelt werden. Sie enthalten den aktuellen Istwert und alle wichtigen Informationen über den momentanen Zustand des Reglers. Im Alarmfall kann anhand des Alarmcodes eine genaue Fehlerdiagnose durchgeführt werden.

9.5.1 Autocal aktiv (AA)

Das "AA"-Bit zeigt an, dass die Funktion AUTOCAL gerade ausgeführt wird.

9.5.2 Autocal gesperrt (AG)

Falls das "AG"-Bit gesetzt ist, ist die Funktion AUTOCAL momentan gesperrt. Das ist dann der Fall, wenn "START" aktiv ist oder wenn sich das Heizelement noch in der Abkühlphase befindet.

9.5.3 Alarm aktiv (AL)

Wenn das "AL"-Bit gesetzt ist, wurde ein Alarm ausgelöst und noch nicht zurückgesetzt. Der Alarmcode gibt Aufschluss über die genaue Fehlerursache (\\$ Kap. 9.10 "Fehlermeldungen" auf Seite 28).

9.5.4 Temperatur erreicht (TE)

Wenn die Ist-Temperatur 95% der Soll-Temperatur erreicht hat, wird das "TE"-Bit gesetzt. Sobald der Regelbetrieb beendet wird ("ST"-Bit = 0) oder ein Alarm auftritt ("AL"-Bit = 1), wird dieses Statusbit wieder zurückgesetzt.

9.5.5 Temperatur OK (TO)

Der UPT-606 prüft, ob die Ist-Temperatur innerhalb eines einstellbaren Toleranzbandes "Gut-Fenster" um die Soll-Temperatur herum liegt. Die untere ($\Delta \vartheta_{unten}$) und obere ($\Delta \vartheta_{oben}$) Toleranzbandgrenze können getrennt über die Parameterdaten (\clubsuit Kap. 9.6 "Parameterdaten" auf Seite 25) verändert werden. Liegt die Ist-Temperatur innerhalb des vorgegebenen Toleranzbandes, wird das "TO"-Bit gesetzt (siehe nachfolgende Grafik):

Die Auswertung der Ist-Temperatur erfolgt im Gegensatz zum Statusbit "Temperatur erreicht" ("TE"-Bit) unabhängig vom Regelbetrieb.

Die Toleranzgrenzen sind ab Fertigungsdatum bis max. +-99K einstellbar.

9.5.6 Regelung aktiv (RA)

Der UPT-606 hat die "START"-Anforderung erfolgreich angenommen und ist im Regelbetrieb, wenn "RA"-Bit = 1 ist.

9.5.7 Vorzeichen (VZ)

Das Vorzeichenbit zeigt im kompakten Protokoll an, ob der Istwert einen positiven oder negativen Betrag hat.

9.5.8 Istwert

Wenn das *kompakte* Protokoll verwendet wird, stellt der Istwert selbst immer eine positive Zahl dar. Das Vorzeichenbit (VZ) zeigt dann an, ob der Istwert einen positiven oder negativen Betrag hat. Im Alarmfall enthält der Istwert den Alarmcode.

Beim *erweiterten* Protokoll müssen die gesamten 16 Bit des ersten Wortes als vorzeichenbehaftete Zahl (Zweierkomplement-Darstellung) ausgewertet werden. Im Alarmfall oder während der Kalibrierung ist der Istwert 0. Der Alarmcode liegt auf separaten Bits.

9.5.9 Alarmcode

Liegt ein Alarm an (AL-Bit = 1), so kann mit dem Alarmcode die genaue Fehlerursache bestimmt werden.

Der Alarmcode wird im kompakten Protokoll an Stelle des Istwertes in Bit 0...3 angezeigt, im erweiterten Protokoll im zweiten Wort an Bitposition 8...11 (\$ Kap. 9.10 "Fehlermeldungen" auf Seite 28).

Neben dem Alarmcode wird auch die PROFIBUS-Diagnose verwendet, um Alarmmeldungen an den PRO-FIBUS-Master zu übertragen. Die Fehlermeldungen zu den entsprechenden Alarmcodes sind bereits in der GSD-Datei hinterlegt und erscheinen damit automatisch beim PROFIBUS-Master in Klartext, wenn dort die Gerätediagnose des UPT-606 abgefragt wird. Die Sprache, in der die Fehlermeldungen erscheinen, hängt von der gewählten GSD-Datei ab.

9.6 Parameterdaten

Die Parameterdaten enthalten Werte für die Auswahl der Legierung des Heizelements, den Temperaturbereich, die untere und obere Toleranzbandgrenze für die Temperaturüberwachung, die Kalibriertemperatur, die optionale Heizzeitbegrenzung, die Messimpulsdauer (nur für Sonder-Applikationen), sowie den Korrekturfaktor. Sie werden bei jedem Systemstart vom PRO-FIBUS-Master an den UPT-606 übertragen. Werden die Parameterdaten während des Betriebs verändert, führt der UPT-606 einen Reset aus. Die PROFIBUS-Kommunikation wird dadurch nicht unterbrochen. Die Parameterdaten haben folgende Struktur:

Nr.	Funktion	Stan- dard- wert ¹	Mögliche Werte
03	reserviert, 0 setzen	0	0
4	Temperaturbereich / Legierung	10	0, 1, 4, 5, 8, 10
5	Untere Temperatur- o.kSchwelle	10K	399K
6	Obere Temperatur- o.kSchwelle	10K	399K
7	Kalibriertemperatur	20°C	040°C
8	Heizzeitbegrenzung (100ms-Einheiten)	0	050 (05,0s)
9	erweiterte Geräte- dignose	akti- viert	deaktiviert, aktiviert
10	Messimpulsdauer	17	1730 (1,73,0ms)
11	Datenformat	High/ Low	High/Low Low/High
12	Korrekturfaktor	100%	25200%

1. Der Standardwert ist in der GSD-Datei hinterlegt und wird beim Systemstart vom PRO-FIBUS-Master an den UPT-606 übertragen.

9.6.1 Temperaturbereich und Legierung

Mit diesem Parameter kann sowohl der Temperaturbereich als auch die Legierung des Heizelements gewählt werden. Durch Ändern des Standardwertes (10) kann die Einstellung des Drehcodierschalters überschrieben werden.

Wert	Temperatur- bereich	Legierung
0	300°C	TCR = 1700ppm, an die ULTRA- PULSE-Heizele- mente angepasst
10	Einstellung vom Drehcodierschalter	Einstellung vom Drehcodierschalter

Nach einer Änderung dieses Parameters muss die Funktion AUTOCAL durchgeführt werden.

9.6.2 Untere Temperatur-o.k.-Schwelle

Unterer Schwellwert für das "Gut-Fenster".

9.6.3 Obere Temperatur-o.k.-Schwelle

Oberer Schwellwert für das "Gut-Fenster".

9.6.4 Variable Kalibriertemperatur

Die Kalibriertemperatur ist standardmäßig auf 20°C eingestellt. Sie kann zwischen 0°C und 40°C verändert werden und somit an die Temperatur des abgekühlten Heizelements angepasst werden.

Nach Änderung der Kalibriertemperatur muss die Funktion AUTOCAL durchgeführt werden.

9.6.5 Heizzeitbegrenzung

Mit der Heizzeitbegrenzung kann eine zusätzliche Überwachung vor ungewolltem Dauerheizen erreicht werden. Der Regler schaltet automatisch den Heizimpuls nach Ablauf der eingestellten Heizzeitbegrenzung aus, wenn das Startbit länger – als die durch die Heizzeitbegrenzung eingestellte Zeit – gesetzt bleiben sollte. Vor dem erneuten Starten des Reglers, muss das Startbit zurückgesetzt werden.

Die Heizzeitbegrenzung ist standardmäßig ausgeschaltet (Wert 0) und kann zwischen 0s und 5,0s (0 und 50) gewählt werden.

9.6.6 Erweiterte Gerätediagnose

Die erweiterte Gerätediagnose nutzt den Diagnosekanal des PROFIBUS-Protokolls, um mögliche Fehlerzustäde des UPT-606 an den PROFIBUS-Master zu melden. In der GSD-Datei sind zu jedem Fehlerzustand Textmeldungen hinterlegt, die bei entsprechender Anzeigemöglichkeit des PROFIBUS-Masters von diesem automatisch angezeigt werden können.

Mit Hilfe des Parameters Nr. 9 kann die erweiterte Gerätediagnose ein- oder ausgeschaltet werden. In der Standardeinstellung ist die erweiterte Gerätediagnose aktiv.

Unabhängig von diesem Parameter bleibt die Möglichkeit erhalten, den Gerätestatus über die Nutzdaten abzufragen.

9.6.7 Messimpulsdauer

Mit Hilfe des Parameters Nr. 10 kann die Länge der vom Regler generierten Messimpulse eingestellt werden. Für bestimmte Applikationen kann es erforderlich sein, den Messimpuls über das Standardmaß von 1,7ms hinaus zu verlängern.

9.6.8 Datenformat

Das Format der zyklisch ausgetauschten Prozessdaten (∜ Kap. 9.3 "PROFIBUS-Protokoll" auf Seite 20) kann verändert werden. Je nach Art des verwendeten PRO-FIBUS-Masters ist es erforderlich, das High-Byte (Bits 15...8) und das Low-Byte (Bits 7...0) gegeneinander zu vertauschen. Die Standardeinstellung (High-Byte/Low-Byte) ist das INTEL-Format. Durch Umschalten dieses Parameters kann das MOTO-ROLA-Format (Low-Byte/High-Byte) ausgewählt werden.

9.6.9 Korrekturfaktor

Der Korrekturfaktor dient zur Anpassung des Reglers an die realen Verhältnisse in der Maschine (Art des UPT-Heizelements, Spezifikation des Impuls-Transformators, Länge der Anschlussleitungen, Kühlung, etc.). Mit dem Parameter Nr. 11 kann der Korrekturfaktor entsprechend eingestellt werden.

Zur Ermittlung des korrekten Korrekturfaktors Co (Parameter Nr. 6) ist wie folgt vorzugehen:

1. Reglereinstellung:

- Soll-Temperatur: 160...180°C

- Schweisszeit: 0,20...0,30s

 <u>Auslösen von Heizimpulsen</u> ("ST"-Bit = 1): Entsprechend Kap. 9.4.2 "Start (ST)" auf Seite 22 vorgehen.

Korrekturfaktor beginnend beim kleinsten Wert (50%) – oder dem im ROPEX-Applikationsbericht empfohlenen Wert minus 25% – langsam erhöhen, bis die Ist-Temperatur am Ende des Heizimpulses der vorgegebenen Soll-Temperatur entspricht.

Bei Betrieb der Maschine sowie Änderung der Soll-Temperatur bzw. der Schweisszeit, ist der Korrekturfaktor zu prüfen und ggf. zu korrigieren.

9.7 Temperaturanzeige (Istwert-Ausg.)

Der UPT-606 liefert an den Klemmen 17+18 ein analoges Signal 0...10VDC, welches zu der realen IST-Temperatur proportional ist.

Spannungswerte:

 $0VDC \rightarrow 0^{\circ}C$

10 VDC \rightarrow 300 °C

Der Zusammenhang zwischen Änderung der Ausgangsspannung und IST-Temperatur ist linear.

An diesen Ausgang kann zur Visualisierung der Heizelement-Temperatur ein Anzeigeinstrument angeschlossen werden.

Die ROPEX-Temperaturanzeige ATR-x ist in seinen Gesamteigenschaften (Größe, Skalierung, dynamisches Verhalten) optimal für diesen Einsatz abgestimmt und sollte immer genutzt werden (\\$ Kap. 4 "Zubehör und Modifikationen" auf Seite 6).

Damit können nicht nur SOLL-IST-Vergleiche angestellt, sondern auch andere Kriterien wie Aufheizgeschwindigkeit, Erreichen des Sollwerts in der vorgegebenen Zeit, Abkühlung des Heizelements, etc. beurteilt werden.

Darüber hinaus können am Anzeige-Instrument sehr gut Störungen im Regelkreis (lose Verbindungen, Kontaktierungs- und Verkabelungsprobleme) sowie u.U. Netzstörungen beobachtet und entsprechend gedeutet werden. Dies gilt auch bei gegenseitiger Beeinflussung mehrerer benachbarter Regelkreise.

Dieser Ausgang ist nicht potentialfrei und kann die Sekundärspannung des Impuls-Transformators führen. Eine externe Erdung darf nicht erfolgen, ansonsten kommt es zu einer Beschädigung des Reglers durch Masseströme. Ein Berührschutz an den Anschlüssen des externen Anzeigeinstruments ist vorzusehen.

Im Alarmfall wird dieser Analogausgang zur Ausgabe differenzierter Fehlermeldungen verwendet (& Kap. 9.10 "Fehlermeldungen" auf Seite 28).

9.8 Booster-Anschluss

Der Regler UPT-606 besitzt standardmäßig einen Anschluss für einen externen Schaltverstärker (Booster). Dieser Anschluss (an den Klemmen 15+16) ist erforderlich bei hohen Primärströmen (Dauerstrom > 5A, Impulsstrom > 25A). Der Anschluss des Schaltverstärkers ist gem. Kap. 7.7 "Anschlussbild mit Booster-Anschluss" auf Seite 14 auszuführen.

9.9 Systemüberwachung/Alarmausgabe

Zur Erhöhung der Betriebssicherheit und Vermeidung von Fehlschweißungen besitzt dieser Regler über hard- und softwaremäßige Maßnahmen eine differenzierte Fehlermeldung und Diagnose. Dabei werden sowohl die äußere Verkabelung als auch das interne System überwacht.

Diese Eigenschaft unterstützt den Betreiber bei der Lokalisierung eines fehlerhaften Betriebszustands in erheblichem Maße.

Eine Systemstörung wird über folgende Elemente gemeldet bzw. differenziert.

A.) Rote LED "ALARM" am Regler leuchtet mit drei Zuständen:

1. Blinkt schnell (4Hz):

Bedeutet, dass die Funktion AUTOCAL durchgeführt werden soll (Fehler-Nr. 8+9).

2. Blinkt langsam (1Hz):

Bedeutet, dass die Systemkonfiguration nicht stimmt und deshalb der durchgeführte Nullabgleich (Funktion AUTOCAL) nicht erfolgreich war (∜ Kap. 8.2 "Gerätekonfiguration" auf Seite 15). Dies entspricht den Fehler-Nummern 10…12.

3. Leuchtet dauernd:

Zeigt an, dass Störungen vorliegen, die eine Inbetriebnahme verhindern (Fehler-Nr. 1...7). In der Regel sind dies externe Verdrahtungsfehler.

B.) Alarm-Relais (Relais-Kontakte Klemmen 12+13+14):

In der Werkseinstellung ist das Alarm-Relais:

- NICHT AKTIV in den Betriebszuständen A.1 und A.2, wird aber aktiviert, wenn in diesem Zustand ein "START"-Signal gegeben wird.
- AKTIV im Fall A.3.

Ist das Alarm-Relais anders konfiguriert als die Werkseinstellung (∜ Kap. 8.2.4 "Konfiguration des Alarm-Relais" auf Seite 17) dann invertieren sich diese Zustände.

C.) Ausgabe der Fehler-Nummer über das PROFIBUS Protokoll

Liegt ein Fehler vor, wird das AL-Bit gesetzt. Der Alarmcode wird im kompakten Protokoll an Stelle des Istwertes in Bit 0...3 angezeigt, im erweiterten Protokoll im zweiten Wort an Bitposition 8...11 (\& Kap. 9.5.9 "Alarmcode" auf Seite 24).

D.) Ausgabe der Fehler-Nummer über Istwert-Ausgang 0...10VDC (Klemme 17+18):

Da im Störungsfall eine Temperaturanzeige nicht erforderlich ist, wird der Istwert-Ausgang im Alarmfall zur Fehlerausgabe verwendet.

Dazu werden innerhalb des 0...10VDC Bereichs 12 Spannungspegel angeboten, denen jeweils eine Fehlernummer zugeordnet ist. (∜ Kap. 9.10 "Fehlermeldungen" auf Seite 28).

Bei Zuständen die AUTOCAL erfordern – oder wenn die Gerätekonfiguration nicht stimmt – (Fehler-Nr. 8...12) wechselt der Istwert-Ausgang zwischen dem Spannungswert der dem Fehler entspricht und dem Endwert (10VDC, d.h 300°C) mit 1Hz hin und her. Wird während dieser Zustände das "START"-Signal gegeben, dann wechselt der Spannungswert nicht mehr.

Über den Analogeingang einer SPS – und einer entsprechenden Auswertung – läßt sich somit eine selektive Fehlererkennung und Fehleranzeige einfach und kostengünstig realisieren (∜ Kap. 9.10 "Fehlermeldungen" auf Seite 28).

9.10 Fehlermeldungen

Neben der im Protokoll codierten Fehlerdiagnose kann auch auf die PROFIBUS-Diagnose (erweiterte Gerätediagnose) zugegriffen werden. Die Alarmcodes erscheinen als Klartext im Projektierungstool, da sie in der GSD-Datei hinterlegt sind.

Die folgende Tabelle zeigt die Zuordnung der ausgegebenen analogen Spannungswerte am Istwert-Ausgang zu den aufgetretenen Fehlern. Weiterhin sind die Fehlerursache und die notwendigen Maßnahmen zur Fehlerbehebung beschrieben.

Das Prinzipschaltbild in Kap. 9.11 "Fehlerbereiche und -ursachen" auf Seite 31 ermöglicht hierbei dann eine schnelle und effiziente Fehlerbeseitigung.

Г

Maßnahme wenn Maschine in Betrieb, leizelem. nicht geänd.	Fehlerbereich ①	Fehlerbereich ③	Fehlerbereiche 2 9	Fehlerbereich	Netz prüfen	RESET ausführen	Gerät austauschen	Fehlerbereich 4 5 6				I
Maßnahme wenn erste Inbetriebnahme	Fehlerbereich ①	Fehlerbereich ③	Fehlerbereich @	Fehlerbereich ④⑤⑥ ("Wackelkontakt")	Netz prüfen	RESET ausführen	Gerät austauschen	AUTOCAL ausführen	AUTOCAL ausführen	Fehlerbereich ®, Konfiguration prüfen	Fehlerbereich ②, Konfiguration prüfen	Fehlerbereich ②⑧, Konfiguration prüfen
Ursache	I _R -Signal fehlt	U _R -Signal fehlt	U _R - und I _R -Signal fehlen	Temperatursprung	Frequenzschwankung, unzulässige Netzfrequenz	Interner Fehler	Interner Fehler, Gerät defekt	U _R - und/oder I _R -Signal falsch	Datenfehler	I _R -Signal falsch, Kalibrierung nicht möglich	U _R Signal falsch, Kalibrierung nicht möglich	U _R - und I _R -Signal falsch, Kalibrierung nicht möglich
STATUS Alarm-Relais (Werkseinst.)				geschlossen					geöffnet, schließt erst mit	"START"-Signal (SpgWert	wechselt dann nicht mehr)	
ALARM Led				leuchtet dauernd				blinkt	(4 Hz)		blinkt langsam (1 Hz)	
Temp. 500°C [°C]	33	66	100	133	166	200	233	ራ 266 ቴ 500 ታ	<i>ச</i> 300	ራ 333 ቴ 500 ቃ	<i>ራ</i> 365	<i></i>
Temp. 300°C [°C]	20	40	60	80	100	120	140	ራ 160 ት 300 ታ	<i>ச</i> 180 ක ৬ 300 එ	ச 200	<i>ச</i> 220	ℱ240 〜 歩 300
lstwert- Ausgang Spg. [V]	0,66	1,33	2,00	2,66	3,33	4,00	4,66	任5,33슈 박 10 관	준6,00숙 박 10 관	<i>任</i> 6,66令 も、10 か	ச7,33 ቴ 10 ቃ	ச 8,00合 も 10 か
Fehler Nr.	-	2	3	4	5	9	7	ω	6	10	11	12

D

٦

9.11 Fehlerbereiche und -ursachen

Der folgenden Tabelle sind Erläuterungen über die möglichen Fehlerursachen zu entnehmen.

Störungs- bereich	Erläuterungen	Mögliche Ursachen				
Û	Unterbrechung des Lastkreises nach dem U _R -Abgriffpunkt	 Kabelbruch, Heizelement defektbruch, Kontaktierung zum Heizelement defekt 				
	Unterbrechung des Signals vom Stromwandler PEX-W2	- I _R -Messleitung vom Stromwandler unterbrochen				
0	Unterbrechung des Primärkreises	 Leitungsbruch, Triac im Regler defekt, Primärwicklung des Impuls-Transformators unterbrochen 				
E	Unterbrechung des Sekundär- kreises vor dem U _R -Abgriffpunkt	 Kabelbruch Sekundärwickl. des Impuls-Transformators unterbrochen 				
3	U _R -Signal fehlt	- Messleitung unterbrochen				
4	Partieller Kurzschluss (Delta R)	 Heizelement wird durch ein leitendes Teil partiell überbrückt (Niederhalter, Gegenschiene, etc.) 				
5	Unterbrechung des parallel geschalteten Kreises	- Kabelbruch, Heizlelement defekt, - Kontaktierung zum Heizelement defekt				
6	Totaler Kurzschluss	 Heizelement falsch eingebaut, Isolation an Schienen köpfen fehlen oder sind falsch montiert, Leitendes Teil überbrückt Heizelement total 				
Ø	U _R -Signal falsch	- DIP-Schalter 1 - 3 richtig konfigurieren (Bereich U ₂)				
	I _R -Signal falsch	- DIP-Schalter 4 + 5 richtig konfigurieren (Bereich I ₂)				
8	Windungen durch Stromwandler PEX-W2 falsch	 Windungszahl prüfen (Bei Strömen < 30A sind zwei oder mehr Windungen erforderlich) 				
9	Interner Gerätefehler	- Hardwarefehler (Regler austauschen)				

10 Werkseinstellungen

Ab Werk ist der CIRUS-Temperaturregler UPT-606 wie folgt konfiguriert:

11 Wartung

Der Regler bedarf keiner besonderen Wartung. Das regelmäßige Prüfen bzw. Nachziehen der Anschlussklemmen – auch der Klemmen für die Wicklungsanschlüsse am Impuls-Transformator – wird empfohlen. Staubablagerungen am Regler können mit trockener Druckluft entfernt werden.

12 Bestellschlüssel

	Regler UPT- 606 / VAC 115: Netzspannung 115VAC, ArtNr. 660601 230: Netzspannung 230VAC, ArtNr. 660602 400: Netzspannung 400VAC, ArtNr. 660603 Lieferumfang: Regler mit Klemmensteckteilen (ohne Stromwandler)
	Stromwandler PEX-W2 ArtNr. 885104
	Netzfilter LF480 06: Dauerstrom 6A, 480VAC, ArtNr. 885500 35: Dauerstrom 35A, 480VAC, ArtNr. 885506
	Impuls-Transformator Auslegung und Bestellangaben siehe ROPEX-Applikationsbericht
e ² , solution and and a solution a	Temperaturanz. ATR 3: 300°C-Bereich, ArtNr. 882130
	Booster B 400 075: Impulsbelastbarkeit 75A, 400VAC, ArtNr. 885301 100: Impulsbelastbarkeit 100A, 400VAC, ArtNr. 885304

13 Index

Α

"AA"-Bit 23 Abmessungen 9 "AC"-Bit 21 "AG"-Bit 23 Alarm 23 Alarmausgabe 28 Alarm-Relais 8, 17 "AL"-Bit 18, 23 Analoge Temperaturanzeige 6 Anschlussbild 13, 14 Anwendung 4 Applikationsbericht 10, 12, 15 AUTOCAL 18 aktiv 23 gesperrt 21, 23 starten 21 Automatischer Nullabgleich 18, 21

В

Bauform 8 Booster 6, 7, 14, 32 Booster-Anschluss 27

D

Digitale Temperaturanzeige 7 DIP-Schalter 15

Ε

Errichtungsbestimmungen 10 Erweiterte Gerätediagnose 26 Externer Schaltverstärker 7, 14

F

Fehlerbereiche 30 Fehlerdiagnose 6 Fehlermeldungen 28

G

Geräteansicht 15 Gerätediagnose 26 GSD-Datei 19

Η

Heizelement 3, 4 Heizleitertyp 8 Hilfsversorung 8

I

Impuls-Transformator 3, 7, 11, 32 Inbetriebnahme 15, 17 Installation 9 Installationsvorschriften 9 Istwert 24 Istwert-Ausgang 27

Κ

Korrekturfaktor 26

L

Legierung 16

Μ

Messimpulsdauer 26 Messleitung 7 Messpause 23 Modifikation (MOD) 7 Montage 8 "MP"-Bit 23

Ν

Netzanschluss 11 Netzfilter 3, 7, 11, 12, 32 Netzfrequenz 8 Netzspannung 8, 32

Ρ

PEX-W2 3, 6, 12, 32 PROFIBUS-DP Schnittstelle 8 Protokoll erweitert 21 kompakt 20

R

"RA"-Bit 18, 24 Regelung aktiv 24 Reset 23 "RS"-Bit 23

S

Schutzart 8 Sekundärspannung U₂ 15 Sekundärstrom I₂ 15 Sollwert 23 Start 22 "START"-Bit 18 Stromwandler 3, 6, 12, 32 Systemüberwachung 28

Т

"TE"-Bit 23 Temperatur erreicht 23 Temperatur OK 24 Temperaturanzeige 6, 27, 32

Temperaturbereich 8, 16 "TO"-Bit 24 Transformator 3, 7, 11, 32

U

Überstromeinrichtung *11* Umgebungstemperatur *8*

V

Verkabelung 10, 11

W

Wartung *31* Werkseinstellungen *31*